Part Number Hot Search : 
0M100 C5103 SP310ECA CA3045H KDD25 SFT6693 074162 54001
Product Description
Full Text Search
 

To Download CAT24C64USI-T3 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? semiconductor components industries, llc, 2015 november, 2016 ? rev. 25 1 publication order number: cat24c64/d cat24c64 64 kb i 2 c cmos serial eeprom description the cat24c64 is a 64 kb cmos serial eeprom device, internally organized as 8192 words of 8 bits each. it features a 32?byte page write buffer and supports the standard (100 khz), fast (400 khz) and fast?plus (1 mhz) i 2 c protocol. external address pins make it possible to address up to eight cat24c64 devices on the same bus. features ? supports standard, fast and fast?plus i 2 c protocol ? 1.7 v to 5.5 v supply voltage range ? 32?byte page write buffer ? hardware write protection for entire memory ? schmitt triggers and noise suppression filters on i 2 c bus inputs (scl and sda) ? low power cmos technology ? 1,000,000 program/erase cycles ? 100 year data retention ? industrial and extended temperature range ? pdip, soic, tssop, us 8?lead, udfn 8?pad and ultra?thin wlcsp 4?bump packages ? this device is pb?free, halogen free/bfr free, and rohs compliant figure 1. functional symbol sda scl wp cat24c64 v cc v ss a 2 , a 1 , a 0 www. onsemi.com pin configurations (top views) see detailed ordering and shipping information in the package dimensions section on page 16 of this data sheet. ordering information soic?8 w suffix case 751bd pdip (l), soic (w, x), us (us), tssop (y), udfn (hu4) pdip?8 l suffix case 646aa tssop?8 y suffix case 948al device address a 0 , a 1 , a 2 serial data sda serial clock scl write protect wp power supply v cc ground v ss function pin name pin function for the location of pin 1, please consult the corresponding package drawing. udfn?8 hu4 suffix case 517az soic?8* x suffix case 751be wlcsp?4 c4c suffix case 567jy sda wp v cc v ss a 2 a 1 a 0 1 scl wlcsp a1 a2 b1 b2 sd a v ss scl v cc 1 * not recommended for new designs ** preliminary; please contact factory for availability us8** us suffix case 493 x = specific device code = (see ordering information) y = production year (last digit) m = production month (1?9, o, n, d) w = production week code x yw marking diagrams (wlcsp?4) wlcsp?4 c4u suffix case 567pb x ym (c4c) (c4u)
cat24c64 www. onsemi.com 2 table 1. absolute maximum ratings parameters ratings units storage temperature ?65 to +150 c voltage on any pin with respect to ground (note 1) ?0.5 to +6.5 v stresses exceeding those listed in the maximum ratings table may damage the device. if any of these limits are exceeded, device function ality should not be assumed, damage may occur and reliability may be affected. 1. the dc input voltage on any pin should not be lower than ?0.5 v or higher than v cc + 0.5 v. during transitions, the voltage on any pin may undershoot to no less than ?1.5 v or overshoot to no more than v cc + 1.5 v, for periods of less than 20 ns. table 2. reliability characteristics (note 2) symbol parameter min units n end (note 3) endurance 1,000,000 program/erase cycles t dr data retention 100 years 2. these parameters are tested initially and after a design or process change that affects the parameter according to appropriat e aec?q100 and jedec test methods. 3. page mode, v cc = 5 v, 25 c. table 3. d.c. operating characteristics ( v cc = 1.8 v to 5.5 v, t a = ?40 c to +125 c and v cc = 1.7 v to 5.5 v, t a = ?40 c to +85 c, unless otherwise speci?ed.) symbol parameter test conditions min max units i ccr read current read, f scl = 400 khz 1 ma i ccw write current write, f scl = 400 khz 2 ma i sb standby current all i/o pins at gnd or v cc t a = ?40 c to +85 c v cc 3.3 v 1  a t a = ?40 c to +85 c v cc > 3.3 v 3 t a = ?40 c to +125 c 5 i l i/o pin leakage pin at gnd or v cc 2  a v il input low voltage ?0.5 v cc x 0.3 v v ih input high voltage v cc x 0.7 v cc + 0.5 v v ol1 output low voltage v cc 2.5 v, i ol = 3.0 ma 0.4 v v ol2 output low voltage v cc < 2.5 v, i ol = 1.0 ma 0.2 v table 4. pin impedance characteristics (v cc = 1.8 v to 5.5 v, t a = ?40 c to +125 c and v cc = 1.7 v to 5.5 v, t a = ?40 c to +85 c, unless otherwise speci?ed.) symbol parameter conditions max units c in (note 4) sda i/o pin capacitance v in = 0 v 8 pf c in (note 4) input capacitance (other pins) v in = 0 v 6 pf i wp (note 5) wp input current v in < v ih , v cc = 5.5 v 130  a v in < v ih , v cc = 3.3 v 120 v in < v ih , v cc = 1.8 v 80 v in > v ih 2 i a (note 5) address input current (a0, a1, a2) product rev f v in < v ih , v cc = 5.5 v 50  a v in < v ih , v cc = 3.3 v 35 v in < v ih , v cc = 1.8 v 25 v in > v ih 2 4. these parameters are tested initially and after a design or process change that affects the parameter according to appropriat e aec?q100 and jedec test methods. 5. when not driven, the wp, a0, a1 and a2 pins are pulled down to gnd internally. for improved noise immunity, the internal pull ?down is relatively strong; therefore the external driver must be able to supply the pull?down current when attempting to drive the input high. to conserve power, as the input level exceeds the trip point of the cmos input buffer (~ 0.5 x v cc ), the strong pull?down reverts to a weak current source.
cat24c64 www. onsemi.com 3 table 5. a.c. characteristics (v cc = 1.8 v to 5.5 v, t a = ?40 c to +125 c and v cc = 1.7 v to 5.5 v, t a = ?40 c to +85 c.) (note 6) symbol parameter standard v cc = 1.7 v ? 5.5 v fast v cc = 1.7 v ? 5.5 v fast?plus (note 9) v cc = 2.5 v ? 5.5 v t a = ?40  c to +85  c units min max min max min max f scl clock frequency 100 400 1,000 khz t hd:sta start condition hold time 4 0.6 0.25  s t low low period of scl clock 4.7 1.3 0.45  s t high high period of scl clock 4 0.6 0.40  s t su:sta start condition setup time 4.7 0.6 0.25  s t hd:dat data in hold time 0 0 0  s t su:dat data in setup time 250 100 50 ns t r (note 7) sda and scl rise time 1,000 300 100 ns t f (note 7) sda and scl fall time 300 300 100 ns t su:sto stop condition setup time 4 0.6 0.25  s t buf bus free time between stop and start 4.7 1.3 0.5  s t aa scl low to data out valid 3.5 0.9 0.40  s t dh data out hold time 100 100 50 ns t i (note 7) noise pulse filtered at scl and sda inputs 100 100 100 ns t su:wp wp setup time 0 0 0  s t hd:wp wp hold time 2.5 2.5 1  s t wr write cycle time 5 5 5 ms t pu (notes 7, 8) power?up to ready mode 1 1 0.1 1 ms product parametric performance is indicated in the electrical characteristics for the listed test conditions, unless otherwise noted. product performance may not be indicated by the electrical characteristics if operated under different conditions. 6. test conditions according to ?a.c. test conditions? table. 7. tested initially and after a design or process change that affects this parameter. 8. t pu is the delay between the time v cc is stable and the device is ready to accept commands. 9. fast?plus (1 mhz) speed class available for product revision ?f?. the die revision ?f? is identified by letter ?f? or a dedic ated marking code on top of the package. table 6. a.c. test conditions input levels 0.2 x v cc to 0.8 x v cc input rise and fall times 50 ns input reference levels 0.3 x v cc , 0.7 x v cc output reference levels 0.5 x v cc output load current source: i ol = 3 ma (v cc 2.5 v); i ol = 1 ma (v cc < 2.5 v); c l = 100 pf
cat24c64 www. onsemi.com 4 power?on reset (por) each cat24c64 incorporates power?on reset (por) circuitry which protects the internal logic against powering up in the wrong state. the device will power up into standby mode after v cc exceeds the por trigger level and will power down into reset mode when v cc drops below the por trigger level. this bi?directional por behavior protects the device against ?brown?out? failure following a temporary loss of power. pin description scl: the serial clock input pin accepts the clock signal generated by the master. sda: the serial data i/o pin accepts input data and delivers output data. in transmit mode, this pin is open drain. data is acquired on the positive edge, and is delivered on the negative edge of scl. a 0 , a 1 and a 2 : the address inputs set the device address that must be matched by the corresponding slave address bits. the address inputs are hard?wired high or low allowing for up to eight devices to be used (cascaded) on the same bus. when left floating, these pins are pulled low internally. the address inputs are not available for use with wlcsp 4?bumps. wp: when pulled high, the write protect input pin inhibits all write operations. when left floating, this pin is pulled low internally. the wp input is not available for the wlcsp 4?bumps, therefore all write operations are allowed for the device in this package. functional description the cat24c64 supports the inter?integrated circuit (i 2 c) bus protocol. the protocol relies on the use of a master device, which provides the clock and directs bus traffic, and slave devices which execute requests. the cat24c64 operates as a slave device. both master and slave can transmit or receive, but only the master can assign those roles. i 2 c bus protocol the 2?wire i 2 c bus consists of two lines, scl and sda, connected to the v cc supply via pull?up resistors. the master provides the clock to the scl line, and either the master or the slaves drive the sda line. a ?0? is transmitted by pulling a line low and a ?1? by letting it stay high. data transfer may be initiated only when the bus is not busy (see a.c. characteristics). during data transfer, sda must remain stable while scl is high. start/stop condition an sda transition while scl is high creates a start or stop condition (figure 2). the start consists of a high to low sda transition, while scl is high. absent the start, a slave will not respond to the master. the stop completes all commands, and consists of a low to high sda transition, while scl is high. device addressing the master addresses a slave by creating a start condition and then broadcasting an 8?bit slave address. for the cat24c64, the first four bits of the slave address are set to 1010 (ah); the next three bits, a 2 , a 1 and a 0 , must match the logic state of the similarly named input pins. the devices in wlcsp 4?bumps respond only to the slave address with a2 a1 a0 = 000 (ca t24c64c4ctr) or to a2 a1 a0 = 100 (cat24c64ac4ctr). the r/w bit tells the slave whether the master intends to read (1) or write (0) data (figure 3). acknowledge during the 9 th clock cycle following every byte sent to the bus, the transmitter releases the sda line, allowing the receiver to respond. the receiver then either acknowledges (ack) by pulling sda low, or does not acknowledge (noack) by letting sda stay high (figure 4). bus timing is illustrated in figure 5. start condition stop condition sda scl figure 2. start/stop timing figure 3. slave address bits 1010 device address* a 2 a 1 a 0 r/w * the devices in wlcsp 4?bumps respond only to the slave address with: a2 a1 a0 = 000, cat24c64c4ctr * the devices in wlcsp 4?bumps respond only to the slave address with: a2 a1 a0 = 100, cat24c64ac4ctr
cat24c64 www. onsemi.com 5 figure 4. acknowledge timing 189 start scl from master bus release delay (transmitter) bus release delay (receiver) data output from transmitter data output from receiver ack setup ( t su:dat ) ack delay ( t aa ) figure 5. bus timing scl sda in sda out t buf t su:sto t su:dat t r t aa t dh t low t high t low t su:sta t hd:sta t hd:dat t f write operations byte write to write data to memory, the master creates a start condition on the bus and then broadcasts a slave address with the r/w bit set to ?0?. the master then sends two address bytes and a data byte and concludes the session by creating a stop condition on the bus. the slave responds with ack after every byte sent by the master (figure 6). the stop starts the internal write cycle, and while this operation is in progress (t wr ), the sda output is tri?stated and the slave does not acknowledge the master (figure 7). page write the byte w rite operation can be expanded to page w rite, by sending more than one data byte to the slave before issuing the stop condition (figure 8) . up to 32 distinct data bytes can be loaded into the internal page write buffer starting at the address provided by the master. the page address is latched, and as long as the master keeps sending data, the internal byte address is incremented up to the end of page, where it then wraps around (within the page). new data can therefore replace data loaded earlier. following the stop, data loaded during the page write session will be written to memory in a single internal write cycle (t wr ). acknowledge polling as soon (and as long) as internal write is in progress, the slave will not acknowledge the master. this feature enables the master to immediately follow?up with a new read or write request, rather than wait for the maximum specified write time (t wr ) to elapse. upon receiving a noack response from the slave, the master simply repeats the request until the slave responds with ack. hardware write protection with the wp pin held high, the entire memory is protected against write operations. if the wp pin is left floating or is grounded, it has no impact on the write operation. the state of the wp pin is strobed on the last falling edge of scl immediately preceding the 1 st data byte (figure 9). if the wp pin is high during the strobe interval, the slave will not acknowledge the data byte and the write request will be rejected. delivery state the cat24c64 is shipped erased, i.e., all bytes are ffh.
cat24c64 www. onsemi.com 6 slave address s a * * * c k a c k a c k s t o p p s t a r t a c k bus activity: master slave address byte address byte data byte figure 6. byte write sequence *a 15 ? a 13 are don?t care bits. a 15 ? a 8 a 7 ? a 0 d 7 ? d 0 figure 7. write cycle timing stop condition start condition address ack 8th bit byte n scl sda t wr slave address s a c k a c k a c k s t a r t a c k s t o p a c k a c k p a c k bus activity: master slave address byte address byte data byte n data byte n+1 data byte n+p figure 8. page write sequence figure 9. wp timing 189 1 8 address byte data byte scl sda wp t su:wp t hd:wp a 7 a 0 d 7 d 0
cat24c64 www. onsemi.com 7 read operations immediate read to read data from memory, the master creates a start condition on the bus and then broadcasts a slave address with the r/w bit set to ?1?. the slave responds with ack and starts shifting out data residing at the current address. after receiving the data, the master responds with noack and terminates the session by creating a stop condition on the bus (figure 10). the slave then returns to standby mode. selective read to read data residing at a speci?c address, the selected address must ?rst be loaded into the internal address register. this is done by starting a byte write sequence, whereby the master creates a start condition, then broadcasts a slave address with the r/w bit set to ?0? and then sends two address bytes to the slave. rather than completing the byte write sequence by sending data, the master then creates a start condition and broadcasts a slave address with the r/w bit set to ?1?. the slave responds with ack after every byte sent by the master and then sends out data residing at the selected address. after receiving the data, the master responds with noack and then terminates the session by creating a stop condition on the bus (figure 11). sequential read if, after receiving data sent by the slave, the master responds with ack, then the slave will continue transmitting until the master responds with noack followed by st op (figure 12). during sequential read the internal byte address is automatically incremented up to the end of memory, where it then wraps around to the beginning of memory. figure 10. immediate read sequence and timing scl sda 8th bit stop no ack data out 89 slave address s a c k data byte n o a c k s t o p p s t a r t bus activity: master slave figure 11. selective read sequence slave address s a c k a c k a c k s t a r t slave s a c k s t a r t p s t o p address byte address byte address n o a c k data byte bus activity: master slave figure 12. sequential read sequence s t o p p slave address a c k a c k a c k n o a c k a c k data byte n data byte n+1 data byte n+2 data byte n+x bus activity: master slave
cat24c64 www. onsemi.com 8 package dimensions pdip?8, 300 mils case 646aa?01 issue a e1 d a l eb b2 a1 a2 e eb c top view side view end view pin # 1 identification notes: (1) all dimensions are in millimeters. (2) complies with jedec ms-001. symbol min nom max a a1 a2 b b2 c d e e1 l 0.38 2.92 0.36 6.10 1.14 0.20 9.02 2.54 bsc 3.30 5.33 4.95 0.56 7.11 1.78 0.36 10.16 eb 7.87 10.92 e 7.62 8.25 2.92 3.80 3.30 0.46 6.35 1.52 0.25 9.27 7.87
cat24c64 www. onsemi.com 9 package dimensions soic 8, 150 mils case 751bd?01 issue o e1 e a a1 h l c e b d pin # 1 identification top view side view end view notes: (1) all dimensions are in millimeters. angles in degrees. (2) complies with jedec ms-012. symbol min nom max a a1 b c d e e1 e h 0o 8o 0.10 0.33 0.19 0.25 4.80 5.80 3.80 1.27 bsc 1.75 0.25 0.51 0.25 0.50 5.00 6.20 4.00 l 0.40 1.27 1.35
cat24c64 www. onsemi.com 10 package dimensions soic?8, 208 mils case 751be?01 issue o e1 eb side view top view e d pin#1 identification end view a1 a l c notes: (1) all dimensions are in millimeters. angles in degrees. (2) complies with eiaj edr-7320.  symbol min nom max a a1 b c d e e1 e 0o 8o 0.05 0.36 0.19 5.13 7.75 5.13 1.27 bsc 2.03 0.25 0.48 0.25 5.33 8.26 5.38 l 0.51 0.76
cat24c64 www. onsemi.com 11 package dimensions tssop8, 4.4x3 case 948al?01 issue o e1 e a2 a1 e b d c a top view side view end view  1 l1 l notes: (1) all dimensions are in millimeters. angles in degrees. (2) complies with jedec mo-153. symbol min nom max a a1 a2 b c d e e1 e l1 0o 8o l 0.05 0.80 0.19 0.09 0.50 2.90 6.30 4.30 0.65 bsc 1.00 ref 1.20 0.15 1.05 0.30 0.20 0.75 3.10 6.50 4.50 0.90 0.60 3.00 6.40 4.40
cat24c64 www. onsemi.com 12 package dimensions udfn8, 2x3 extended pad case 517az?01 issue o 0.065 ref copper exposed e2 d2 l e pin #1 index area pin #1 identification dap size 1.8 x 1.8 detail a d a1 b e a top view side view front view detail a bottom view a3 0.065 ref 0.0 - 0.05 a3 notes: (1) all dimensions are in millimeters. (2) refer jedec mo-236/mo-252. symbol min nom max a 0.45 0.50 0.55 a1 0.00 0.02 0.05 a3 0.127 ref b 0.20 0.25 0.30 d 1.95 2.00 2.05 d2 1.35 1.40 1.45 e 3.00 e2 1.25 1.30 1.35 e 2.95 0.50 ref 3.05 l 0.25 0.30 0.35 a
cat24c64 www. onsemi.com 13 package dimensions us8 case 493?02 issue b dim a min max min max inches 1.90 2.10 0.075 0.083 millimeters b 2.20 2.40 0.087 0.094 c 0.60 0.90 0.024 0.035 d 0.17 0.25 0.007 0.010 f 0.20 0.35 0.008 0.014 g 0.50 bsc 0.020 bsc h 0.40 ref 0.016 ref j 0.10 0.18 0.004 0.007 k 0.00 0.10 0.000 0.004 l 3.00 3.20 0.118 0.126 m 0 6 0 6 n 5 10 5 10 p 0.23 0.34 0.010 0.013 r 0.23 0.33 0.009 0.013 s 0.37 0.47 0.015 0.019 u 0.60 0.80 0.024 0.031 v 0.12 bsc 0.005 bsc notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: millimeters. 3. dimension ?a? does not include mold flash, protrusion or gate burr. mold flash. protrusion and gate burr shall not exceed 0.140 mm (0.0055?) per side. 4. dimension ?b? does not include inter?lead flash or protrusion. inter?lead flash and protrusion shall not e3xceed 0.140 (0.0055?) per side. 5. lead finish is solder plating with thickness of 0.0076?0.0203 mm. (300?800 ?). 6. all tolerance unless otherwise specified 0.0508 (0.0002 ?). l b a p g 4 1 5 8 c k d seating j s r u detail e v f h n r 0.10 typ m ?y? ?x? ?t? detail e t m 0.10 (0.004) xy t 0.10 (0.004)   plane *for additional information on our pb?free strategy and soldering details, please download the on semiconductor soldering and mounting techniques reference manual, solderrm/d. soldering footprint*  mm inches  scale 8:1 3.8 0.15 0.50 0.0197 1.0 0.0394 0.30 0.012 1.8 0.07
cat24c64 www. onsemi.com 14 package dimensions case 567jy issue o seating plane 0.05 c notes: 1. dimensioning and tolerancing per asme y14.5m, 1994. 2. controlling dimension: millimeters. 3. coplanarity applies to spherical crowns of solder balls. 2x dim a min max ??? millimeters a1 d 0.76 bsc e b 0.15 0.16 e 0.40 bsc 0.35 d e a b pin a1 reference e a 0.05 b c 0.03 c 0.05 c 4x b 12 b a 0.05 c a a1 a2 c 0.0415 0.0715 0.76 bsc 0.05 c 2x top view side view bottom view note 3 e a2 0.255 ref pitch 0.16 4x dimensions: millimeters *for additional information on our pb?free strategy and soldering details, please download the on semiconductor soldering and mounting techniques reference manual, solderrm/d. soldering footprint* 0.40 0.40 recommended a1 package outline pitch die coat detail a (optional) a2 a3 a3 0.025 ref detail a
cat24c64 www. onsemi.com 15 package dimensions case 567pb issue o seating plane e d a b pin a1 reference e a 0.05 b c 0.03 c 0.05 c 4x b 12 b a 0.05 c a a1 a2 c top view side view bottom view note 4 e pitch 0.16 4x dimensions: millimeters *for additional information on our pb?free strategy and soldering details, please download the on semiconductor soldering and mounting techniques reference manual, solderrm/d. soldering footprint* 0.40 0.40 recommended 1 package outline pitch detail a notes: 1. dimensioning and tolerancing per asme y14.5m, 1994. 2. controlling dimension: millimeters. 3. datum c, the seating plane, is defined by the spherical crowns of the solder balls. 4. coplanarity applies to spherical crowns of the solder balls. 5. dimension b is measured at the maximum contact ball diameter parallel to datum c. 6. backside coating is optional. dim a min nom ??? millimeters a1 d e b 0.15 0.155 e 0.40 bsc ??? 0.04 0.055 a2 0.19 ref a3 0.025 ref 0.71 0.76 0.71 0.76 max 0.16 0.30 0.07 0.81 0.81 a2 detail a note 6 die coat (optional) a3 note 5 note 3 a
cat24c64 www. onsemi.com 16 ordering information device order number specific device marking package type temperature range lead finish shipping cat24c64li?g 24c64f pdip?8 i = industrial (?40 c to +85 c) nipdau tube, 50 units / tube cat24c64we?gt3 (note 12) 24c64f soic?8, jedec e = extended (?40 c to +125 c) nipdau tape & reel, 3,000 units / reel cat24c64wi?gt3 24c64f soic?8, jedec i = industrial (?40 c to +85 c) nipdau tape & reel, 3,000 units / reel cat24c64wi?g 24c64f soic?8, jedec i = industrial (?40 c to +85 c) nipdau tube, 100 units / tube cat24c64xi?t2 24c64f soic?8, eiaj i = industrial (?40 c to +85 c) matte?tin tape & reel, 2,000 units / reel cat24c64ye?gt3 (note 12) c64f tssop?8 e = extended (?40 c to +125 c) nipdau tape & reel, 3,000 units / reel cat24c64yi?gt3 c64f tssop?8 i = industrial (?40 c to +85 c) nipdau tape & reel, 3,000 units / reel cat24c64yi?g c64f tssop?8 i = industrial (?40 c to +85 c) nipdau tube, 100 units / tube cat24c64hu4e?gt3 (note 12) c6u udfn?8 e = extended (?40 c to +125 c) nipdau tape & reel, 3,000 units / reel cat24c64hu4i?gt3 c6u udfn?8 i = industrial (?40 c to +85 c) nipdau tape & reel, 3,000 units / reel cat24c64c4ctr a wlcsp?4 with die coat industrial (?40 c to +85 c) n/a tape & reel, 5,000 units / reel cat24c64ac4ctr (note 14) tbd wlcsp?4 with die coat industrial (?40 c to +85 c) n/a tape & reel, 5,000 units / reel cat24c64c4utr a wlcsp?4 with die coat industrial (?40 c to +85 c) n/a tape & reel, 5,000 units / reel cat24c64usi?t3 (note 12) tbd us8 i = industrial (?40 c to +85 c) matte?tin tape & reel, 3,000 units / reel 10. all packages are rohs?compliant (lead?free, halogen?free). 11. the standard lead finish is nipdau. 12. contact factory for availability. 13. for information on tape and reel specifications, including part orientation and tape sizes, please refer to our tape and ree l packaging specifications brochure, brd8011/d. 14. product in development; this wlcsp?4 option responds to a different slave address compared to cat24c64c4ctr. 15. caution: the eeprom devices delivered in wlcsp must never be exposed to ultra violet light. when exposed to ultra violet light the eeprom cells lose their stored data. on semiconductor and are trademarks of semiconductor components industries, llc dba on semiconductor or its subsidiaries i n the united states and/or other countries. on semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property . a listing of on semiconductor?s product/patent coverage may be accessed at www.onsemi.com/site/pdf/patent?marking.pdf . on semiconductor reserves the right to make changes without further notice to any products herein. on semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does o n semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including wi thout limitation special, consequential or incidental damages. buyer is responsible for its products and applications using on semiconductor products, including compliance with all laws, reg ulations and safety requirements or standards, regardless of any support or applications information provided by on semiconductor. ?typical? parameters which may be provided in on semiconductor data sheets and/or specifications can and do vary in dif ferent applications and actual performance may vary over time. all operating parameters, including ?typic als? must be validated for each customer application by customer?s technical experts. on semiconductor does not convey any license under its patent rights nor the right s of others. on semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any fda class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. should buyer purchase or use on semicondu ctor products for any such unintended or unauthorized application, buyer shall indemnify and hold on semiconductor and its officers, employees, subsidiaries, affiliates, and distrib utors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that on semiconductor was negligent regarding the design or manufacture of the part. on semiconductor is an equal opportunity/affirmative action employer. this literature is subject to all applicable copyright laws and is not for resale in any manner. p ublication ordering information n. american technical support : 800?282?9855 toll free usa/canada europe, middle east and africa technical support: phone: 421 33 790 2910 japan customer focus center phone: 81?3?5817?1050 cat24c64/d literature fulfillment : literature distribution center for on semiconductor 19521 e. 32nd pkwy, aurora, colorado 80011 usa phone : 303?675?2175 or 800?344?3860 toll free usa/canada fax : 303?675?2176 or 800?344?3867 toll free usa/canada email : orderlit@onsemi.com on semiconductor website : www.onsemi.com order literature : http://www.onsemi.com/orderlit for additional information, please contact your loc al sales representative ? on semiconductor is licensed by philips corporation to carry the i 2 c bus protocol.


▲Up To Search▲   

 
Price & Availability of CAT24C64USI-T3

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X